Templating sub-10 nm atomic layer deposited oxide nanostructures on graphene via one-dimensional organic self-assembled monolayers.
نویسندگان
چکیده
Molecular-scale control over the integration of disparate materials on graphene is a critical step in the development of graphene-based electronics and sensors. Here, we report that self-assembled monolayers of 10,12-pentacosadiynoic acid (PCDA) on epitaxial graphene can be used to template the reaction and directed growth of atomic layer deposited (ALD) oxide nanostructures with sub-10 nm lateral resolution. PCDA spontaneously assembles into well-ordered domains consisting of one-dimensional molecular chains that coat the entire graphene surface in a manner consistent with the symmetry of the underlying graphene lattice. Subsequently, zinc oxide and alumina ALD precursors are shown to preferentially react with the functional moieties of PCDA, resulting in templated oxide nanostructures. The retention of the original one-dimensional molecular ordering following ALD is dependent on the chemical reaction pathway and the stability of the monolayer, which can be enhanced via ultraviolet-induced molecular cross-linking.
منابع مشابه
Seeding atomic layer deposition of high-k dielectrics on epitaxial graphene with organic self-assembled monolayers.
The development of high-performance graphene-based nanoelectronics requires the integration of ultrathin and pinhole-free high-k dielectric films with graphene at the wafer scale. Here, we demonstrate that self-assembled monolayers of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) act as effective organic seeding layers for atomic layer deposition (ALD) of HfO(2) and Al(2)O(3) on epitaxi...
متن کاملThree-input gate logic circuits on chemically assembled single-electron transistors with organic and inorganic hybrid passivation layers
Single-electron transistors (SETs) are sub-10-nm scale electronic devices based on conductive Coulomb islands sandwiched between double-barrier tunneling barriers. Chemically assembled SETs with alkanethiol-protected Au nanoparticles show highly stable Coulomb diamonds and two-input logic operations. The combination of bottom-up and top-down processes used to form the passivation layer is vital...
متن کاملFabrication of molecular nanopatterns at aluminium oxide surfaces by nanoshaving of self-assembled monolayers of alkylphosphonates.
Nanoshaving, by tracing an atomic force microscope probe across a surface at elevated load, has been used to fabricate nanostructures in self-assembled monolayers of alkylphosphonates adsorbed at aluminium oxide surfaces. The simple process is implemented under ambient conditions. Because of the strong bond between the alkylphosphonates and the oxide surface, loads in excess of 400 nN are requi...
متن کاملSelective atomic layer deposition of titanium oxide on patterned self-assembled monolayers formed by microcontact printing.
We demonstrate a selective atomic layer deposition of TiO2 thin films on patterned alkylsiloxane self-assembled monolayers. Microcontact printing was done to prepare patterned monolayers of the alkylsiloxane on Si substrates. The patterned monolayers define and direct the selective deposition of the TiO2 thin film using atomic layer deposition. The selective atomic layer deposition is based on ...
متن کاملSolution-deposited organic-inorganic hybrid multilayer gate dielectrics. Design, synthesis, microstructures, and electrical properties with thin-film transistors.
We report here on the rational synthesis, processing, and dielectric properties of novel layer-by-layer organic/inorganic hybrid multilayer dielectric films enabled by polarizable π-electron phosphonic acid building blocks and ultrathin ZrO(2) layers. These new zirconia-based self-assembled nanodielectric (Zr-SAND) films (5-12 nm thick) are readily fabricated via solution processes under ambien...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 13 12 شماره
صفحات -
تاریخ انتشار 2013